

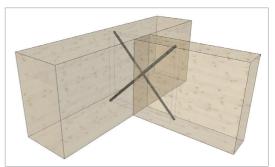
Technische Information

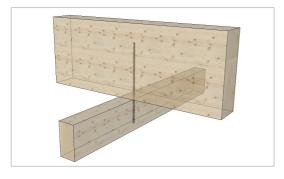
Inhalt

Befestigungssystem WB	4
Allgemein WB	3
Grundinformationen zum Befestiger	4
 Zug-/Druck-Verbindung 	6
 Schubverbindung 	10
 Anschluss Haupt-/Nebenträger 	12
 Abscherverbindung 	14
 Rand- und Zwischenabstände 	15
Weitere Informationen	16
Querzugverstärkung	
von Brettschichtholzträgern	19
Verstärkung ausgeklinkte Träger	27
Verstärkung von Trägerdurchbrüchen	33
Querzugverstärkung	41
Querdruckverstärkung	47

Keine Haftung

Alle Angaben sind unverbindlich und ohne Gewähr. Vor der Verwendung der Produkte sind alle Angaben und Berechnungen von einer Fachperson zu überprüfen und lokale Vorschriften zu beachten. Dieses Dokument unterliegt der Überarbeitung. Technische Änderungen sind vorbehalten. 10/2022, V1.01




Befestigungssystem **HECO-WB**

Technisches Datenblatt

Vorteile, die überzeugen

- Hohe Tragfähigkeit
- Einfache Verarbeitung
- Hoher Brandwiderstand der Verbindung
- Befestiger nicht sichtbar
- ETA-19/0129 (WB)

Die WB-16 und WB-20 Befestiger sind als Stange mit 3 m Länge erhältlich und dürfen auf die benötigte Länge zugeschnitten werden. Der WB-20 Befestiger ist auch als Stange mit 1.5 m Länge erhältlich, wobei über die Länge von 0.1 m ein M16 Gewinde aufgerollt ist.

Grundinformationen zum Befestiger WB

	WB-16	WB-20	Einheit
d	16	20	[mm]
d_1	12	15	[mm]
$M_{y,k}$	220	390	[Nm]
f _{tens,k}	100	160	[kN]
f _y	800	700	[N/mm ²]
f _{tor,k}	200	600	[Nm]

Für den Winkel α zwischen Befestiger und Faserrichtung gilt: $30^{\circ} \le \alpha \le 90^{\circ}$

 $I_{ef} = 4 \cdot d$

d Gewindeaussendurchmesser des Befestigers [mm]

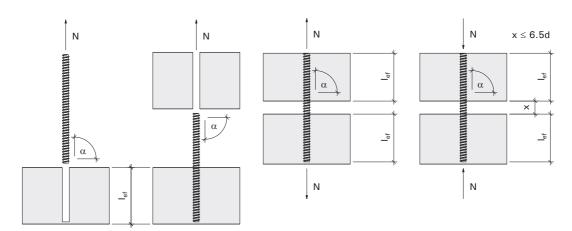
 $I_{\rm ef}$ Einbindetiefe des Gewindeteils des Befestigers im Holzbauteil [mm]

 $f_{ax,k} = 9 [N/mm^2]$ für Vollholz (Bsp. C24) und Brettschichtholz (Bsp. GL24h)

 $\begin{array}{ll} k_{ax} &= 1 & \text{bei } 45^\circ \leq \alpha \leq 90^\circ \\ k_{ax} &= 0.3 + (0.7 \cdot \alpha/45^\circ) \text{ bei } 30^\circ \leq \alpha < 45^\circ \end{array}$

 $\kappa_{\rm ax} = 0.3 \pm (0.7 \cdot \alpha/45)$ below $\leq \alpha < 45$ \propto Winkel zwischen Schraubenachse und Faserrichtung

Verschiebungsmodul bei Beanspruchung in Achsrichtung:


 $K_{ser} = 25 \cdot I_{ef} \cdot d$

d Gewindeaussendurchmesser des Befestigers [mm]

l_{ef} Einbindetiefe des Gewindeteils des Befestigers im Holzbauteil [mm]

Für die Ausführungsplanung sind alle Ausführungen in der ETA-19/0129 zu berücksichtigen

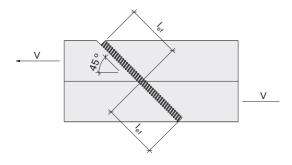
Zug-/Druck-Verbindung

Zugverbindung									C24
								$\rho_k = 3$	350 [kg/m³]
									R _{N,d} [kN]
Befestiger	l _{ef} [mm]	30°	40°	45°	50°	60°	70°	80°	90°
WB-16	100	6,79	8,17	8,86	8,86	8,86	8,86	8,86	8,86
	200	13,59	16,34	17,72	17,72	17,72	17,72	17,72	17,72
	300	20,38	24,52	26,58	26,58	26,58	26,58	26,58	26,58
	400	27,18	32,69	35,45	35,45	35,45	35,45	35,45	35,45
	500	33,97	40,86	44,31	44,31	44,31	44,31	44,31	44,31
	600	40,76	49,03	53,17	53,17	53,17	53,17	53,17	53,17
	700	47,56	57,21	62,03	62,03	62,03	62,03	62,03	62,03
	800	54,35	65,38	70,89	70,89	70,89	70,89	70,89	70,89
	900	61,14	73,55	76,92	76,92	76,92	76,92	76,92	76,92
	1000	67,94	76,92						
WB-20	100	8,49	10,22	11,08	11,08	11,08	11,08	11,08	11,08
	200	16,98	20,43	22,15	22,15	22,15	22,15	22,15	22,15
	300	25,48	30,65	33,23	33,23	33,23	33,23	33,23	33,23
	400	33,97	40,86	44,31	44,31	44,31	44,31	44,31	44,31
	500	42,46	51,08	55,38	55,38	55,38	55,38	55,38	55,38
	600	50,95	61,29	66,46	66,46	66,46	66,46	66,46	66,46
	700	59,45	71,51	77,54	77,54	77,54	77,54	77,54	77,54
	800	67,94	81,72	88,62	88,62	88,62	88,62	88,62	88,62
	900	76,43	91,94	99,69	99,69	99,69	99,69	99,69	99,69
	1000	84,92	102,15	110,77	110,77	110,77	110,77	110,77	110,77
	1100	93,42	112,37	121,85	121,85	121,85	121,85	121,85	121,85
	1200	101,91	122,58	123,08	123,08	123,08	123,08	123,08	123,08

 $\rm n_{ef} = \rm n^{0.9}$, wobei n = Gesamtanzahl Befestiger der Verbindung Allgemeine Bemerkungen siehe Seite 12

Druckverbindung									C24
								$\rho_k = 3$	350 [kg/m³]
									$R_{N,d}[kN]$
Befestiger	l _{ef} [mm]	30°	40°	45°	50°	60°	70°	80°	90°
WB-16	100	6,79	8,17	8,86	8,86	8,86	8,86	8,86	8,86
	200	13,59	16,34	17,72	17,72	17,72	17,72	17,72	17,72
	300	20,38	24,52	26,58	26,58	26,58	26,58	26,58	26,58
	400	27,18	32,69	35,45	35,45	35,45	35,45	35,45	35,45
	500	33,97	40,86	44,31	44,31	44,31	44,31	44,31	44,31
	600	40,76	46,37	46,69	47,00	47,58	48,12	48,61	49,07
	700	45,66							
	800								
	900								
	1000								
WB-20	100	8,49	10,22	11,08	11,08	11,08	11,08	11,08	11,08
	200	16,98	20,43	22,15	22,15	22,15	22,15	22,15	22,15
	300	25,48	30,65	33,23	33,23	33,23	33,23	33,23	33,23
	400	33,97	40,86	44,31	44,31	44,31	44,31	44,31	44,31
	500	42,46	51,08	55,38	55,38	55,38	55,38	55,38	55,38
	600	50,95	61,29	66,46	66,46	66,46	66,46	66,46	66,46
	700	59,45	67,74	68,14	68,52	69,23	69,88	70,49	71,04
	800	66,87							
	900								
	1000								
	1100								
	1200								

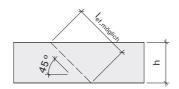
 $\rm n_{ef}=n^{0.9}$, wobei n = Gesamtanzahl Befestiger der Verbindung Allgemeine Bemerkungen siehe Seite 12


Zugverbindung									GL24h
								$\rho_k = 3$	385 [kg/m³]
									R _{N,d} [kN]
Befestiger	l _{ef} [mm]	30°	40°	45°	50°	60°	70°	80°	90°
WB-16	100	7,33	8,82	9,56	9,56	9,56	9,56	9,56	9,56
	200	14,66	17,64	19,13	19,13	19,13	19,13	19,13	19,13
	300	22,00	26,46	28,69	28,69	28,69	28,69	28,69	28,69
	400	29,33	35,28	38,25	38,25	38,25	38,25	38,25	38,25
	500	36,66	44,10	47,82	47,82	47,82	47,82	47,82	47,82
	600	43,99	52,92	57,38	57,38	57,38	57,38	57,38	57,38
	700	51,32	61,74	66,95	66,95	66,95	66,95	66,95	66,95
	800	58,66	70,56	76,51	76,51	76,51	76,51	76,51	76,51
	900	65,99	76,92	76,92	76,92	76,92	76,92	76,92	76,92
	1000	73,32							
WB-20	100	9,17	11,02	11,95	11,95	11,95	11,95	11,95	11,95
	200	18,33	22,05	23,91	23,91	23,91	23,91	23,91	23,91
	300	27,50	33,07	35,86	35,86	35,86	35,86	35,86	35,86
	400	36,66	44,10	47,82	47,82	47,82	47,82	47,82	47,82
	500	45,83	55,12	59,77	59,77	59,77	59,77	59,77	59,77
	600	54,99	66,15	71,73	71,73	71,73	71,73	71,73	71,73
	700	64,16	77,17	83,68	83,68	83,68	83,68	83,68	83,68
	800	73,32	88,20	95,64	95,64	95,64	95,64	95,64	95,64
	900	82,49	99,22	107,59	107,59	107,59	107,59	107,59	107,59
	1000	91,65	110,25	119,55	119,55	119,55	119,55	119,55	119,55
	1100	100,82	121,27	123,08	123,08	123,08	123,08	123,08	123,08
	1200	109,98	123,08						

 $\rm n_{ef} = \rm n^{0.9}$, wobei n = Gesamtanzahl Befestiger der Verbindung Allgemeine Bemerkungen siehe Seite 12

Druckverbindung									GL24h
								$\rho_k = 3$	885 [kg/m³]
									R _{N,d} [kN]
Befestiger	l _{ef} [mm]	30°	40°	45°	50°	60°	70°	80°	90°
WB-16	100	7,33	8,82	9,56	9,56	9,56	9,56	9,56	9,56
	200	14,66	17,64	19,13	19,13	19,13	19,13	19,13	19,13
	300	22,00	26,46	28,69	28,69	28,69	28,69	28,69	28,69
	400	29,33	35,28	38,25	38,25	38,25	38,25	38,25	38,25
	500	36,66	44,10	47,50	47,80	47,82	47,82	47,82	47,82
	600	43,99	47,18			48,37	48,89	49,37	49,82
	700	46,50							
	800								
	900								
	1000								
WB-20	100	9,17	11,02	11,95	11,95	11,95	11,95	11,95	11,95
	200	18,33	22,05	23,91	23,91	23,91	23,91	23,91	23,91
	300	27,50	33,07	35,86	35,86	35,86	35,86	35,86	35,86
	400	36,66	44,10	47,82	47,82	47,82	47,82	47,82	47,82
	500	45,83	55,12	59,77	59,77	59,77	59,77	59,77	59,77
	600	54,99	66,15	69,13	69,50	70,19	70,83	71,41	71,95
	700	64,16	68,74						
	800	67,90							
	900								
	1000								
	1100								
	1200								

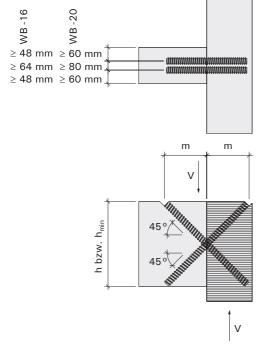
 $\rm n_{ef}=n^{0.9}$, wobei n = Gesamtanzahl Befestiger der Verbindung Allgemeine Bemerkungen siehe Seite 12

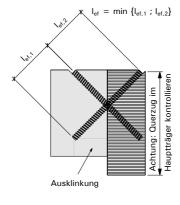

Schubverbindung

Holz-Holz

Achtung: Bei einseitiger Schrägsetzung können nur Kräfte aus **einer** Richtung aufgenommen werden (vgl. Abb.)

Maximal möglich lef infolge Balkenhöhe




h [mm]	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
I _{ef, mögl.} [mm]	141	282	424	565	707	848	989	1.131	1.272	1.414	1.555	1.697	1.838	1.979	2.121

Schubverbindung		C24	GL24h
		$\rho_{k} = 350 [kg/m^{3}]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef} [mm]	R _{N,d} [kN]	R _{N,d} [kN]
WB-16	100	6,27	6,76
	200	12,53	13,53
	300	18,80	20,29
	400	25,06	27,05
	500	31,33	33,81
	600	37,60	40,58
	700	43,86	47,34
	800	50,13	54,10
	900	54,39	54,39
	1000		
WB-20	100	7,83	8,45
	200	15,67	16,91
	300	23,50	25,36
	400	31,33	33,81
	500	39,16	42,27
	600	47,00	50,72
	700	54,83	59,17
	800	62,66	67,63
	900	70,49	76,08
	1000	78,33	84,53
	1100	86,16	87,03
	1200	87,03	

 $n_{ef}=n^{0.9}$, wobei n= Gesamtanzahl Befestiger der Verbindung Ausnahme: Verdübelter Balken $ightarrow n_{ef}=n$ Allgemeine Bemerkungen siehe Seite 12

Anschluss Haupt-/Nebenträger

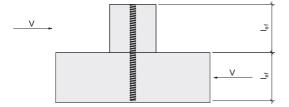
Allgemeine Bemerkungen

- Querzugbeanspruchungen müssen gesondert nachgewiesen werden
- Bei Verbindungen in tragenden Holzkonstruktionen müssen jeweils mindestens zwei Gewindestangen verwendet werden
- Eine einzelne Gewindestange kann in tragenden-Verbindungen verwendet werden, wenn die Einbindetiefe der Gewindestange mindestens 20 d beträgt und die Gewindestange nur axial belastet wird
- (einzelne Gewindestange) Wird die Gewindestange zur Verbindung von Holzbauteilen verwendet, so ist die Tragfähigkeit der einzelnen Gewindestange in diesem Fall um 50% zu verringern
- (einzelne Gewindestange) Wird die Gewindestange als Zug- oder Druckbewehrung von Holzkonstruktionen senkrecht zur Faserrichtung verwendet, ist keine Verringerung der Tragfähigkeit der Gewindestange erforderlich

- Bei mehreren gemeinsam in einer Verbindung wirkenden Befestigern bzw. Befestigerpaaren müssen die angegebenen Widerstände mit dem Faktor n_{ef} multipliziert werden
- Werte gelten für entsprechende Verankerungslängen I_{ef} des Gewindes
- Wenn die WB Befestiger mit der Eindrehhülse versenkt werden ist zu berücksichtigen, dass die Befestiger, im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widerstand aufweisen
- Anschlussgeometrien gemäss Zeichnungen sind einzuhalten
- Alle Widerstände R_d berechnet mit $\eta_w = \eta_t = 1$
- Tabellenwerte für $k_{mod} = 0.8$ und $\gamma_{M} = 1,3$ gemäß EN1995-1-1:2004+AC:2006+A1:2008

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben

Anschluss H	aupt-/Nebenträ	ger			C24	GL24h
					$\rho_{k} = 350 [kg/m^{3}]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	Länge [mm]	l _{ef} [mm]	h _{min} [mm]	m [mm]	R _{N,d} [kN]	R _{N,d} [kN]
WB-16	200	100	160	70	12,53	13,53
	400	200	300	140	25,06	27,05
	600	300	440	210	37,60	40,58
	800	400	580	285	50,13	54,10
	1000	500	740	355	62,66	67,63
	1200	600	880	425	75,19	81,15
	1400	700	1020	495	87,72	94,68
	1600	800	1160	565	100,26	108,20
	1800	900	1300	635	108,79	108,79
	2000	1000	1440	705		
WB-20	200	100	160	70	15,67	16,91
	400	200	300	140	31,33	33,81
	600	300	440	210	47,00	50,72
	800	400	580	285	62,66	67,63
	1000	500	740	355	78,33	84,53
	1200	600	880	425	93,99	101,44
	1400	700	1020	495	109,66	118,34
	1600	800	1160	565	125,32	135,25
	1800	900	1300	635	140,99	152,16
	2000	1000	1440	705	156,65	169,06
	2200	1100	1580	780	172,32	174,06
	2400	1200	1720	850	174,06	

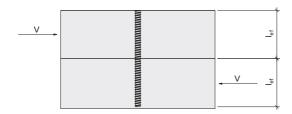

 $n_{ef} = n^{0.9}$, wobei n = Anzahl Kreuze bestehend aus 2 Befestigern

Werte gelten grundsätzlich für Anschlüsse, bei denen die Befestiger je zur Hälfte in beiden Bauteilen liegen Ist der Befestiger nicht hälftig in beiden Bauteilen, muss für den Widerstand die kürzere Einbindelänge verwendet werden (siehe Zeichnung) und die geometrischen Angaben in der Tabelle verlieren ihre Gültigkeit

 $\alpha = 45^{\circ}$ (Einschraubwinkel)

Sofern es die Randabstände zulassen, kann h_{\min} unterschritten werden Allgemeine Bemerkungen siehe Seite 12

Abscherverbindung



Winkel zwischen Kraft- und Faserrichtung = 90°

Abscherverbindung		C24	GL24h
		$\rho_{k} = 350 [kg/m^{3}]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef} [mm]	R _{v,d} [kN] 1)	R _{V,d} [kN] 1)
WB-16	100	6,21	6,57
	200	8,10	8,61
	≥ 300	8,65	9,08
WB-20	100	8,53	9,02
	200	10,89	11,56
	≥ 300	12,34	12,94

¹⁾ nur bis max. 5 Befestiger in Faserrichtung hintereinander

Allgemeine Bemerkungen siehe Seite 15

Winkel zwischen Kraft- und Faserrichtung = 0°

Abscherverbindung		C24	GL24h
		$\rho_{k} = 350 [kg/m^{3}]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef} [mm]	R _{v,d} [kN] 1)	R _{V,d} [kN] 1)
WB-16	100	7,34	7,76
	200	9,23	9,79
	≥ 300	10,91	11,44
WB-20	100	10,28	10,86
	200	12,64	13,40
	300	15,00	15,95
	≥ 400	15,85	16,63

¹⁾ nur bis max. 5 Befestiger in Faserrichtung hintereinander

Allgemeine Bemerkungen siehe Seite 15

Umrechnungsfaktoren wenn weniger als 5 Befestiger in Faserrichtung hintereinander sind

Anzahl Befestiger	1	2	3	4	5
Umrechnungsfaktor	1,17	1,09	1,05	1,02	1,00

Allgemeine Bemerkungen

- Bei Verbindungen in tragenden Holzkonstruktionen müssen jeweils mindestens zwei Gewindestangen verwendet werden
- Bei mehreren gemeinsam in einer Verbindung wirkenden Befestiger bzw. Befestigerpaaren müssen die angegebenen Widerstände mit dem Faktor n_{ef} multipliziert werden
- Anschlussgeometrien gemäss Zeichnungen sind einzuhalten
- Winkel zwischen Schraube und Faserrichtung beträgt 90°
- Tabellenwerte für $k_{mod} = 0.8$ und $\gamma_M = 1,3$ gemäß EN1995-1-1:2004+AC:2006+A1:2008

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben

Rand- und Zwischenabstände

Winkel zwischen	Kraft- und	Faserrichtung = α
-----------------	------------	--------------------------

			α = 90°	α = 0°	α = 0°	α = 90°
Mit Vorb	Mit Vorbohrung 1)		Axial	Abscheren	Axial	Abscheren
			[mm]	[mm]	[mm]	[mm]
WB-16	Parallel zur Faser	a ₁	64	80	80	64
	Rechtwinklig zur Faser	a ₂	64	48	48	64
	Beanspruchtes Hirnholz	a _{3,t}	112	192	192	112
	Unbeanspruchtes Hirnholz	a _{3,c}	112	112	112	112
	Beanspruchter Rand	a _{4,t}	112	48	48	112
	Unbeanspruchter Rand	a _{4,c}	48	48	48	48
WB-20	Parallel zur Faser	a ₁	80	100	100	80
	Rechtwinklig zur Faser	a ₂	80	60	60	80
	Beanspruchtes Hirnholz	a _{3,t}	140	240	240	140
	Unbeanspruchtes Hirnholz	a _{3,c}	140	140	140	140
	Beanspruchter Rand	a _{4,t}	140	60	60	140
	Unbeanspruchter Rand	a _{4,c}	60	60	60	60

 $^{^{1)}}$ Vorbohrung erforderlich: WB-16 ightarrow 12 oder 13 [mm]; WB-20 ightarrow 16 [mm]

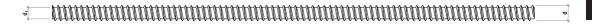
Achsabstände Randabstand Randabstand $a_{1,TG}$ $a_{1,CG}$ Randabstand Randabstand a_1 a_1 a_{2,CG} Achsabstände Randabstand a₁ a₁ $a_{1,CG}$ Randabstand $a_{1,CG}$ a_{1,CG} a_2 a_{2,CG} a_{1,CG} a_{2,CG}

1 Schwerpunkt des Schraubengewindes im Bauteil

 $a_{1,\text{CG}} \\$

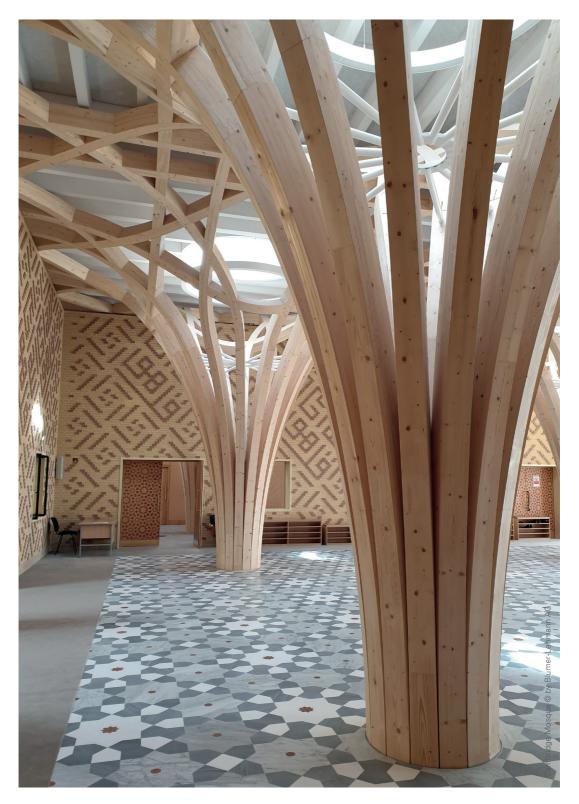
1 Schwerpunkt des Schraubengewindes im Bauteil

a_{2,C}


a_{2,CG}

a_{1,CG}

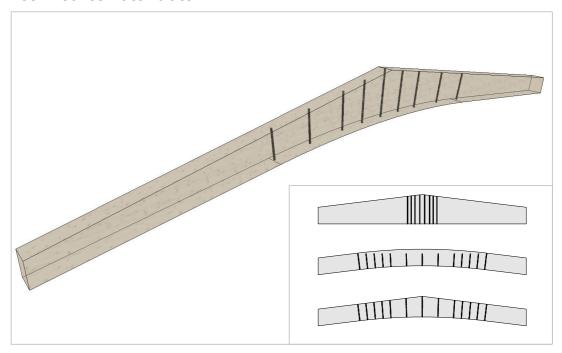
Vorbohrdurchmesser


	Standard [mm]	auch erlaubt sind [mm]
WB-16	13	12
WB-20	16	15

Befestigungssystem WB

Ausführung		HECO-WB Gewindestange
Werkstoff		Kohlenstoffstahl
Oberfläche	verzinkt blau A3K	Für Nutzungsklassen: 1 und 2 (nicht direkt bewittert)

Тур		Nenn Ø		Länge	Antrieb
		d		L	
		[mm]		[mm]	
WB	-	16	Х	3000	Eindrehhülse
WB	-	20	Х	3000	Eindrehhülse



Querzugverstärkung von Brettschichtholzträgern

Befestigungssystem **HECO-WB**

Technisches Datenblatt

Vorteile, die überzeugen

- Hohe Tragfähigkeit
- Einfache Verarbeitung
- Hoher Brandwiderstand der Verbindung
- Befestiger nicht sichtbar
- Einfache Berechnung
- ETA-19/0129 (WB)

Satteldachträger mit geradem unteren Rand

Querzugspannung $\sigma_{t.90.d}$

$$\sigma_{t,90,d} = k_p \cdot \frac{6 \cdot M_{ap,d}}{b \cdot {h_{ap}}^2}$$

M_{an} Biegemoment im Firstquerschnitt

b Breite des Trägers

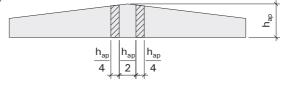
h_{ao} Höhe des Trägers im Firstquerschnitt

$$k_p = 0.2 \cdot \tan \alpha$$

α Faseranschnittwinkel

In der inneren Hälfte des querzugbeanspruchten Bereichs wird die Anzahl $n_{\rm in}$ Gewindestangen WB benötigt ($n_{\rm in}$ auf ganze Zahlen aufrunden)

$$n_{in} = \frac{\sigma_{t,90,d} \cdot b \cdot h_{ap}}{2 \cdot R_{ax,d}}$$

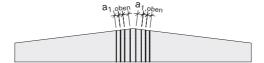

 $R_{\rm ax,d}$ Bemessungswert der Tragfähigkeit gemäss Lasttabelle auf Seite 23, Kapitel 3 in Abhängigkeit von $I_{\rm ef}$ (siehe Allgemeine Bemerkungen)

In den äusseren Vierteln des querzugbeanspruchten Bereichs wird die Anzahl n_{au} Gewindestangen WB benötigt. (n_{au} auf ganze Zahlen aufrunden)

$$n_{au} = \frac{2}{3} \cdot n_{in}$$

Allgemeine Bemerkungen

- Die Gewindestangen müssen rechtwinklig zu den Holzfasern eingedreht werden und müssen mit Ausnahme einer Randlamelle über die gesamte Trägerhöhe durchgehen
- Die effektive Einbindelänge I_{ef} ist die kürzeste Gewindelänge auf einer Seite der Trägerlängsachse



2

- Bei kleineren Querschnitten können alternativ auch CC oder WR Befestiger eingesetzt werden
- Die Bemessungswerte der Tragfähigkeit von CC Befestigern sind auf den Seiten 5 und 6, Kapitel 3 und von WR Befestigern sind auf den Seiten 17-20, Kapitel 3 zu finden.

Die Abstände am oberen Trägerrand $a_{\rm 1,oben}$ müssen folgende Bedingung einhalten:

250 mm
$$\leq a_{1,oben} \leq 0.75 \cdot h_{ap}$$

Querzugverstärkung von Brettschichtholzträgern

Gekrümter Träger

Querzugspannung $\sigma_{t,90,d}$

$$\sigma_{t,90,d} = k_p \cdot \frac{6 \cdot M_{ap,d}}{b \cdot h_{ap}^2}$$

M_{ap} Biegemoment im Firstquerschnitt

Breite des Trägers

h_{an} Höhe des Trägers im Firstquerschnitt

$$k_p = 0.25 \cdot \frac{h_{ap}}{r}$$

$$r = r_{in} + \frac{h_{ap}}{2}$$

r Krümmungsradius in der Achse des Trägers

r_{in} Krümmungsradius am unteren Rand

In der inneren Hälfte des querzugbeanspruchten Bereichs wird die Anzahl $n_{\rm in}$ Gewindestangen WB benötigt ($n_{\rm in}$ auf ganze Zahlen aufrunden)

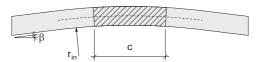
$$n_{in} = \frac{\sigma_{t,90,d} \cdot b \cdot c}{R_{ax.d}}$$

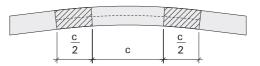
$$c = r_{in} \cdot sin\beta$$

 $R_{\rm ax,d}$ Bemessungswert der Tragfähigkeit gemäss Lasttabelle auf Seite 23, Kapitel 3 in Abhängigkeit von $I_{\rm ef}$ (siehe Allgemeine Bemerkungen)

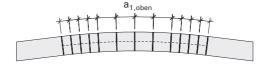
In den äusseren Vierteln des querzugbeanspruchten Bereichs wird die Anzahl n_{au} Gewindestangen WB benötigt. (n_{au} auf ganze Zahlen aufrunden)

$$n_{au} = \frac{2}{3} \cdot n_{in}$$


Allgemeine Bemerkungen

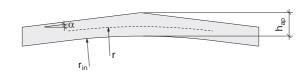

- Die Gewindestangen müssen rechtwinklig zu den Holzfasern eingedreht werden und müssen mit Ausnahme einer Randlamelle über die gesamte Trägerhöhe durchgehen
- Die effektive Einbindelänge I_{ef} ist die kürzeste Gewindelänge auf einer Seite der Trägerlängsachse

Die Abstände am oberen Trägerrand a_{1,oben} müssen folgende Bedingung einhalten:


250 mm
$$\leq a_{1,oben} \leq 0.75 \cdot h_{ap}$$

- Bei kleineren Querschnitten können alternativ auch CC oder WR Befestiger eingesetzt werden
- Die Bemessungswerte der Tragfähigkeit von CC Befestigern sind auf den Seiten 5 und 6, Kapitel 3 und von WR Befestigern sind auf den Seiten 17-20, Kapitel 3 zu finden.

Sattelträger mit gekrümtem unteren Rand

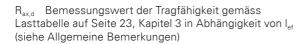

Querzugspannung $\sigma_{t,90,d}$

$$\sigma_{t,90,d} = k_p \cdot \frac{6 \cdot M_{ap,d}}{b \cdot h_{ap}^{2}}$$

M_{an} Biegemoment im Firstquerschnitt

b Breite des Trägers

han Höhe des Trägers im Firstquerschnitt


$$\begin{aligned} k_p &= 0.2 \cdot tan\alpha + \frac{h_{ap}}{r} \cdot (0.25 - 1.5 \cdot tan\alpha + 2.6 \cdot tan^2\alpha) + \left(\frac{h_{ap}}{r}\right)^2 \cdot (2.1 \cdot tan\alpha - 4 \cdot tan^2\alpha) \\ r &= r_{in} + \frac{h_{ap}}{2} \end{aligned}$$

r Krümmungsradius in der Achse des Trägers r_{in} Krümmungsradius am unteren Rand

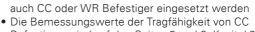
In der inneren Hälfte des querzugbeanspruchten Bereichs wird die Anzahl $n_{\rm in}$ Gewindestangen WB benötigt ($n_{\rm in}$ auf ganze Zahlen aufrunden)

$$n_{in} = \frac{\sigma_{t,90,d} \cdot b \cdot c}{R_{ax,d}}$$

$$c = r_{\scriptscriptstyle in} \cdot sin\beta$$

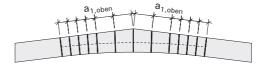
In den äusseren Vierteln des querzugbeanspruchten Bereichs wird die Anzahl n_{au} Gewindestangen WB benötigt. (n_{au} auf ganze Zahlen aufrunden)

$$n_{au} = \frac{2}{3} \cdot n_{in}$$


$\frac{c}{2}$ c $\frac{c}{2}$

Allgemeine Bemerkungen

- Die Gewindestangen müssen rechtwinklig zu den Holzfasern eingedreht werden und müssen mit Ausnahme einer Randlamelle über die gesamte Trägerhöhe durchgehen
- Die effektive Einbindelänge I_{ef} ist die kürzeste Gewindelänge auf einer Seite der Trägerlängsachse


Die Abstände am oberen Trägerrand a_{1,oben} müssen folgende Bedingung einhalten:

250 mm
$$\leq a_{1,oben} \leq 0.75 \cdot h_{ap}$$

• Bei kleineren Querschnitten können alternativ

 Die Bemessungswerte der Tragfahigkeit von CC Befestigern sind auf den Seiten 5 und 6, Kapitel 3 und von WR Befestigern sind auf den Seiten 17-20, Kapitel 3 zu finden.

Querzugverstärkung von Brettschichtholzträgern

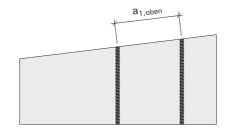
Bemessungswerte der Tragfähigkeit

Zugtragfähigke	it	C24	GL24h
		$\rho_{k} = 350 \text{ [kg/m}^3]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef} [mm]	R _{ax,d} [kN]	R _{ax,d} [kN]
WB-16	100	8,86	9,56
	200	17,72	19,13
	300	26,58	28,69
	400	35,45	38,25
	500	44,31	47,82
	600	53,17	57,38
	700	62,03	66,95
	800	70,89	76,51
	900	76,92	76,92
	1000		
WB-20	100	11,08	11,95
	200	22,15	23,91
	300	33,23	35,86
	400	44,31	47,82
	500	55,38	59,77
	600	66,46	71,73
	700	77,54	83,68
	800	88,62	95,64
	900	99,69	107,59
	1000	110,77	119,55
	1100	121,85	123,08
	1200	123,08	

Allgemeine Bemerkungen siehe Seite 24

= Stahlversagen

Korrekturwerte $k_{\scriptscriptstyle F}$ für andere Festigkeitsklassen $^{\scriptscriptstyle 1)}$


	C24	GL24k	GL24h	GL28k	GL28h	GL32k	GL32h
ρ_k ([kg/m ³]	350	365	385	390	425	400	440
k _F	1,00	1,03	1,08	1,09	1,17	1,11	1.20

 $^{^{1)}}$ Die Tragfähigkeit ist durch das Stahlversagen begrenzt. Entsprechend dürfen für die WB-16 keine höheren Werte als $R_{ax,d} = 76,92$ kN und für die WB-20 keine höheren Werte als $R_{ax,d} = 123,08$ kN angenommen werden.

Querzugverstärkung von Brettschichtholzträgern

Mindestabstände für Querzugverstärkungen von Brettschichtholzträgern

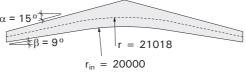
	a _{1,oben}	a ₂	a _{2,CG}
	[mm]	[mm]	[mm]
WB-16	250	64	48
WB-20	250	80	60

Allgemeine Bemerkungen

- Die Gewindestangen müssen rechtwinklig zu den Holzfasern eingedreht werden und müssen mit Ausnahme einer Randlamelle über die gesamte Trägerhöhe durchgehen
- Die effektive Einbindelänge I_{ef} ist die kürzeste Gewindelänge auf einer Seite der Trägerlängsachse
- Bei kleineren Querschnitten k\u00f6nnen alternativ auch CC oder WR Befestiger eingesetzt werden
- Die Bemessungswerte der Tragfähigkeit von CC Befestigern sind auf den Seiten 5 und 6, Kapitel 3 und von WR Befestigern sind auf den Seiten 17-20, Kapitel 3 zu finden
- Bei mehreren, gemeinsam in einer Verbindung wirkenden Befestigern bzw. Befestigerpaaren, müssen die angegebenen Widerstände mit dem Faktor nef multipliziert werden

- Werte gelten für entsprechende Verankerungslängen let des Gewindes
- Wenn die WB Schrauben mit der Eindrehhülse versenkt werden ist zu berücksichtigen, dass die Schrauben, im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widrestand aufweisen
- Anschlussgeometrien gemäss Zeichnungen sind einzuhalten
- Tabellenwerte für $k_{mod} = 0.8$ und $\gamma_{M} = 1,3$ gemäß EN1995-1-1:2004+AC:2006+A1:2008

Vor der Ausführung sind sämtliche Berechnungen vom verantwortiliche Planer zu überprüfen und freizugeben


2035

Querzugverstärkung von Brettschichtholzträgern

Beispiel

Satteldachträger mit gekrümtem unteren Rand gemäss nachfolgenden Ausführungen Nutzungsklasse 1; GL24h

 $\begin{array}{lll} b &= 140 \text{ mm} \\ I &= 18.000 \text{ mm} \\ h_{ap} &= 2.035 \text{ mm} \\ r_{in} &= 20.000 \text{ mm} \ \rightarrow \ r = r_{in} + 0.5 \cdot h_{ap} = 21.018 \text{ mm} \\ \alpha &= 15^{\circ} \\ \beta &= 9^{\circ} \end{array}$

3129

18000

$$g'_{k} = 4.0 \text{ kN/m'}$$

 $q'_{k} = 5.0 \text{ kN/m'}$

$$c = r_{in} \cdot sin\beta = 3.129 \text{ mm}$$
$$0.5 \cdot c = 1.564 \text{ mm}$$

$$M_{ap,G,k} = g'_k \cdot l^2 / 8 = 162.0 \text{ kNm} M_{ap,Q,k} = q'_k \cdot l^2 / 8 = 202.5 \text{ kNm}$$

$$M_{ap,d} = 1.35 \cdot M_{ap,G,k} + 1.5 \cdot M_{ap,Q,k} = 522.5 \text{ kNm}$$

$$k_p = 0.2 \cdot tan\alpha + \frac{h_{ap}}{r} \cdot (0.25 - 1.5 \cdot tan\alpha + 2.6 \cdot tan^2\alpha) + \left(\frac{h_{ap}}{r}\right)^2 \cdot (2.1 \cdot tan\alpha - 4 \cdot tan^2\alpha)$$

$$k_n = 0.06$$

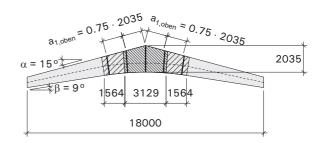
$$\sigma_{t,90,d} = k_p \cdot \frac{6 \cdot M_{ap,d}}{b \cdot h_{ap}^2}$$

$$\sigma_{t,90,d}=0.32~\text{N/mm}$$

$$\rightarrow f_{t,90,d} = 0.15 \text{ N/mm}^2$$
 $\sigma_{t,90,d}$ / $f_{t,90,d} = 2.13 > 1$ \rightarrow Verstärkung erforderlich!

Verstärkung mit WB-16

 $I_{ef} = 700 \text{ mm}$ (zeichnerisch ermittelt)


 $R_{ax,d} = 66,95 \text{ kN (für } I_{ef} = 700 \text{ mm; siehe Tabelle)}$

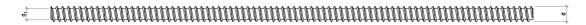
$$n_{in} = \frac{\sigma_{t,90,d} \cdot b \cdot c}{R_{ax.d}}$$

$$n_{in} = 2.09 \text{ ST} \rightarrow 3 \text{ ST}$$

$$n_{au} = \frac{2}{3} \cdot n_{in}$$

$$n_{au} = 1.39 ST \rightarrow 2 ST$$

5 ST WB-16; rechtwinklig zur Faserrichtung; jede Stange muss mit Ausnahme einer Randlamelle über die gesamte Höhe gehen Anordnung in Trägermitte: $a_{2,CG} = 70$ mm; Mindestabstand $a_{2,CG} = 48$ mm \rightarrow i.O.


Allgemeine Bemerkungen

- Das Beispiel bezieht sich ausschliesslich auf die Querzugverstärkung
- Alle weiteren erforderlichen Nachweise sind gesondert aufzuführen

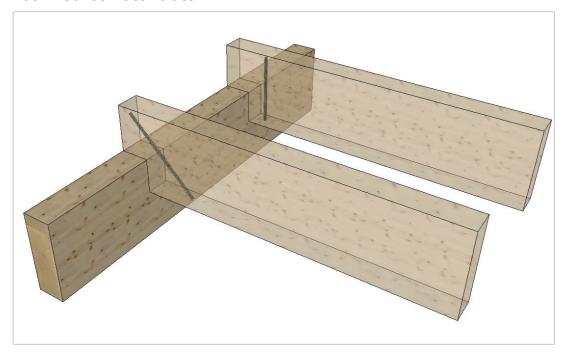
Vor der Ausführung sind sämtliche Berechnungen vom verantwortiliche Planer zu überprüfen und freizugeben.

Querzugverstärkung von Brettschichtholzträgern

Befestigungssystem WB

Ausführung		HECO-WB Gewindestange
Werkstoff		Kohlenstoffstahl
Oberfläche	verzinkt blau A3K	Für Nutzungsklassen: 1 und 2 (nicht direkt bewittert)

Тур		Nenn Ø		Länge	Antrieb
		d		L	
		[mm]		[mm]	
WB	-	16	Х	3000	Eindrehhülse
WB	-	20	Х	3000	Eindrehhülse


Verstärkung ausgeklinkte Träger

Befestigungssystem **HECO-WB**

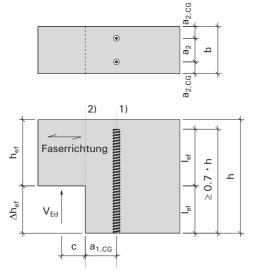
Technisches Datenblatt

Vorteile, die überzeugen

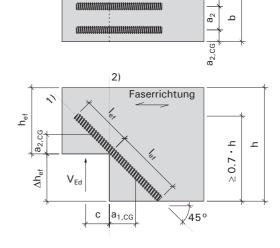
- Hohe Tragfähigkeit
- Einfache Verarbeitung
- Hoher Brandwiderstand der Verbindung
- Befestiger nicht sichtbar
- ETA-19/0129 (WB)

Bemessungsvorschlag nach EN1995-1-1-NA 2013-08 NA.6.8.3

- ullet Es müssen die Verstärkungen und die Spannungen im verbleibenden Querschnitt (h Δh_{ef}) nachgewiesen werden
- In Trägerlängsrichtung darf nur 1 Befestiger angeordnet werden
- Die Verstärkung einer rechtwinkligen Ausklinkung auf der querzugbeanspruchten Seite eines Trägerauflagers ist für folgenden Bemessungswert der Zugkraft Ft,90,Ed zu bemessen:


$$F_{t,90,Ed} = 1.3 \left[3 \cdot \left(\frac{\Delta h_{ef}}{h} \right)^2 - 2 \cdot \left(\frac{\Delta h_{ef}}{h} \right)^3 \right] \cdot V_{Ed}$$

 $F_{t,90,Ed}$ Bemessungswert der auf die Verstärkung wirkenden Zugkraft. Die Zugkraft $F_{t,90,Ed}$ ist in der Höhe der querzugbeanspruchten Ausklinkungsecke wirkend anzunehmen und über die Verankerungslänge I_{ef} einzuleiten


h Trägerhöhe

Δh_{ef} Höhe der Ausklinkung

Befestiger 90°

Befestiger 45°

a_{2,cg}

Nachweis

$$\frac{F_{t,90,d}}{n^{0.9} \cdot R_d} \le 1.0$$

- n Anzahl der Befestiger (nebeneinander; in Trägerlängsrichtung darf nur ein Befestiger angeordnet werden)
- R_d Bemessungswert der Tragfähigkeit eines Befestigers (siehe Tabelle)

Verstärkung ausgeklinkte Träger

Der Bemessungswert für den Tragwiderstand muss mit der kürzeren Einbindelänge des Gewindes $l_{\rm ef}$ ermittelt werden. Wenn die WB Schrauben mit der Eindrehhülse versenkt werden ist zu berücksichtigen, dass die Befestiger, im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widerstand aufweisen (etnsprechend ist $l_{\rm ef}$ zu reduzieren).

		Befestiger 90°			Befestiger 45°
		C24	GL24h	C24	GL24h
		$\rho_k = 350 [kg/m^3]$	$\rho_{k} = 385 [kg/m^{3}]$	$\rho_k = 350 [kg/m^3]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef} [mm]	R _d [kN]	R _d [kN]	R _d [kN]	R _d [kN]
WB-16	100	8,86	9,56	6,27	6,76
	200	17,72	19,13	12,53	13,53
	300	26,58	28,69	18,80	20,29
	400	35,45	38,25	25,06	27,05
	500	44,31	47,82	31,33	33,81
	600	53,17	57,38	37,60	40,58
	700	62,03	66,95	43,86	47,34
	800	70,89	76,51	50,13	54,10
	900	76,92	76,92	54,39	54,39
	1000				
WB-20	100	11,08	11,95	7,83	8,45
	200	22,15	23,91	15,67	16,91
	300	33,23	35,86	23,50	25,36
	400	44,31	47,82	31,33	33,81
	500	55,38	59,77	39,16	42,27
	600	66,46	71,73	47,00	50,72
	700	77,54	83,68	54,83	59,17
	800	88,62	95,64	62,66	67,63
	900	99,69	107,59	70,49	76,08
	1000	110,77	119,55	78,33	84,53
	1100	121,85	123,08	86,16	87,03
	1200	123,08		87,03	

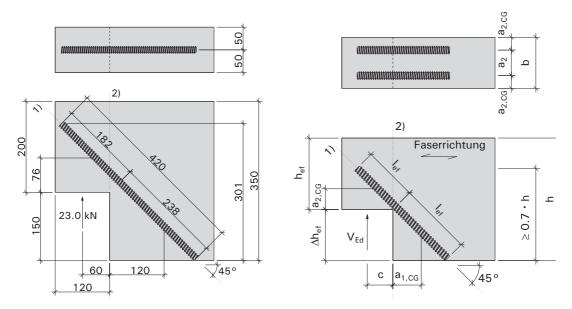
Allgemeine Bemerkungen siehe unten

= Stahlversagen

Allgemeine Bemerkungen

- Wenn die WB Schrauben mit der Eindrehhülse versenkt werden ist zu berücksichtigen, dass die Schrauben, im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widerstand aufweisen
- Werte gelten für entsprechende Verankerungslängen s bzw. let des Gewindes
- Tabellenwerte für k_{mod} = 0.8 und γ_M= 1,3 gemäß EN1995-1-1:2004+AC:2006+A1:2008
- Allgemeine Informationen zum Befestiger WB befinden sich im Unterkapitel: "Allgemeine Informationen WB" ab Seite 3

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben


Rand- und Zwischenabstände

WB-Befestiger siehe Unterkapitel "Allgemeine Informationen WB" \rightarrow ab Seite 15 siehe auch ETA-19/0129 Seite 12

Beispiel

Brettschichtholz GL24h; Nutzungsklasse 1

Verstärkung 1 × WB-16

Ohne Verstärkung (siehe EN 1995-1-1:2010-12 Kapitel 6.5.2)

 $h_{ef} = 350 - 150 = 200 \text{ mm}$ GL24h $\rightarrow k_n = 6.5 \text{ mm}$

$$kv = \min \left\{ \frac{k_n \left[1 + \frac{1,1i^{1,5}}{\sqrt{h}} \right]}{\sqrt{h} \left[\sqrt{\alpha (1-\alpha)} + 0.8 \frac{x}{h} \sqrt{\frac{1}{\alpha} - \alpha^2} \right]} \right.$$

$$\tau_d = 1.5 \cdot \frac{V_{Ed}}{b \cdot h_{ef}} = \frac{23.0 \cdot 10^3}{100 \cdot 200} = 1.15 \frac{N}{mm^2} > k_v \cdot f_{v,d} = 0.54 \cdot 1.8 = 0.97 \rightarrow nicht \, i. \, 0.$$

→ Verstärkung erforderlich!

Verstärkung ausgeklinkte Träger

Mit Verstärkung

 $a_{1,CG} = 120 \text{ mm} > 112 \text{ mm} \rightarrow i.O.$ $a_{2,CG} = 76 \text{ mm} > 48 \text{ mm} \rightarrow i.O.$ $a_{2,CG} = 50 \text{ mm} > 48 \text{ mm} \rightarrow i.O.$ $287 \text{ mm} > 0.7 \cdot 350 \text{ mm} = 245 \text{ mm} \rightarrow i.O.$

Nachweis an Stelle 1)

$$F_{t,90,Ed} = 1.3 \left[3 \cdot \left(\frac{\Delta h_{ef}}{h} \right)^2 - 2 \cdot \left(\frac{\Delta h_{ef}}{h} \right)^3 \right] \cdot V_{Ed} = 1.3 \left[3 \cdot \left(\frac{150}{350} \right)^2 - 2 \cdot \left(\frac{150}{350} \right)^3 \right] \cdot 23.0 = 11.77 \; kN$$

$$I_{ef} = 200 \text{ mm} \rightarrow R_d = 13.63 \text{ kN}$$

 $I_{ef} = 100 \text{ mm} \rightarrow R_d = 6.81 \text{ kN}$

$$l_{ef} = 182 \text{ mm} \rightarrow R_d = 13.63 - \frac{(200 - 182) \cdot (13.63 - 6.81)}{200 - 100} = 12.40 \text{ kN}$$

$$\frac{F_{t,90,d}}{n^{0.9} \cdot R_d} = \frac{11.77}{1^{0.9} \cdot 12.40} = 0.95 < 1.0 \rightarrow i.0.$$

Nachweis an Stelle 2)

$$\frac{\tau_d}{f_{v,d}} = \frac{1.5 \cdot V_{Ed}}{b \cdot h_{ef} \cdot f_{v,d}} = \frac{1.5 \cdot 23.0 \cdot 10^3}{100 \cdot 200 \cdot 1.8} = 0.96 < 1.0 \rightarrow i.0.$$

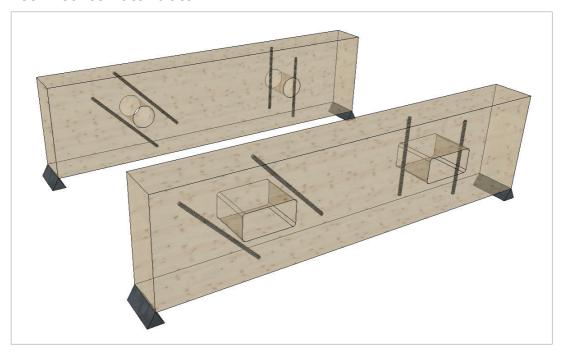
Ist der Abstand c gross, so kann an Stelle 2) auch ein Biegespannungsnachweis erforderlich sein.

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben

Verstärkung ausgeklinkte Träger

Befestigungssystem WB

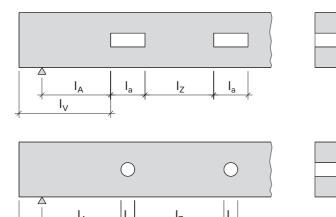
Ausführung		HECO-WB Gewindestange
Werkstoff		Kohlenstoffstahl
Oberfläche	verzinkt blau A3K	Für Nutzungsklassen: 1 und 2 (nicht direkt bewittert)


Тур		Nenn Ø		Länge	Antrieb
		d		L	
		[mm]		[mm]	
WB	-	16	Х	3000	Eindrehhülse
WB	-	20	Х	3000	Eindrehhülse

Verstärkung von Trägerdurchbrüchen

Befestigungssystem **HECO-WB**

Technisches Datenblatt


Vorteile, die überzeugen

- Hohe Tragfähigkeit
- Einfache Verarbeitung
- Hoher Brandwiderstand der Verbindung
- Befestiger nicht sichtbar
- ETA-19/0129 (WB)

Bemessungsvorschlag nach EN1995-1-1-NA 2013-08 NA.6.8.3

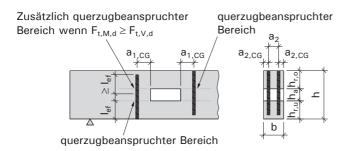
Folgende Randbedingungen sind einzuhalten:

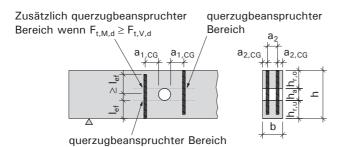
 $I_{V} \geq h$ $I_{A} \geq h / 2$ $I_{Z} \geq \max \{h ; 300 \text{ mm}\}$ $I_{A} \leq h$ $I_{A} \leq h$ $I_{A} \leq h$ $I_{A} \leq 0.25 \cdot h$ $I_{A} \leq 0.3 \cdot h$

$$F_{t,90,Ed} = \frac{h_a}{4 \cdot h} \cdot \left[3 - \left(\frac{h_a}{h}\right)^2 \right] \cdot V_{Ed} + \frac{1}{125 \cdot h_r} \cdot M_{Ed}$$

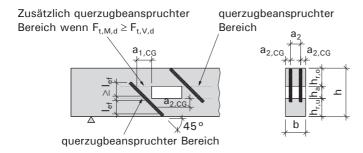
 $F_{t,90,Ed}$ Bemessungswert der Zugkraft rechtwinklig zur Holzfaser infolge V_d und M_d

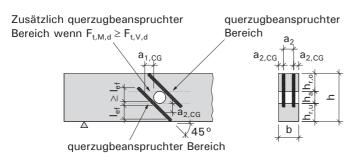
h Trägerhöhe


h_a Höhe des Durchbruchs


Rechteckige Durchbrüche $h_r = min \{h_{r,o}; h_{r,u}\}$

Runde Durchbrüche $h_r = \min \{h_{r,o} + 0.15 \cdot h_a; h_{r,u} + 0.15 \cdot h_a\}$


Verstärkung von Trägerdurchbrüchen


Befestiger 90°

Befestiger 45°

Verstärkung von Trägerdurchbrüchen

Nachweis

$$\frac{F_{t,90,d}}{n^{0.9} \cdot R_d} \le 1.0$$

F_{t 90 d} Bemessungswert der auf die Verstärkung wirkenden Zugkraft

Anzahl der Befestiger (nebeneinander; in Trägerlängsrichtung darf nur ein Befestiger angeordnet werden)

R_d Bemessungswert der Tragfähigkeit eines Befestigers (siehe Tabelle)

Die kürzere Einbindetiefe $I_{\rm ef}$ des Gewindes ober- oder unterhalb der Linie, die den querzugbeanspruchten Teil beschreibt, ist für die Bemessung massgebened.

		Befestiger 90°		Befestiger 45°	
		C24	GL24h	C24	GL24h
		$\rho_k = 350 [kg/m^3]$	$\rho_{k} = 385 [kg/m^{3}]$	$\rho_k = 350 [kg/m^3]$	$\rho_{\rm k} = 385 [{\rm kg/m^3}]$
Befestiger	l _{ef} [mm]	R _d [kN]	R _d [kN]	R _d [kN]	R _d [kN]
WB-16	100	8,86	9,56	6,27	6,76
	200	17,72	19,13	12,53	13,53
	300	26,58	28,69	18,80	20,29
	400	35,45	38,25	25,06	27,05
	500	44,31	47,82	31,33	33,81
	600	53,17	57,38	37,60	40,58
	700	62,03	66,95	43,86	47,34
	800	70,89	76,51	50,13	54,10
	900	76,92	76,92	54.39	54,39
	1000				
WB-20	100	11,08	11,95	7,83	8,45
	200	22,15	23,91	15,67	16,91
	300	33,23	35,86	23,50	25,36
	400	44,31	47,82	31,33	33,81
	500	55,38	59,77	39,16	42,27
	600	66,46	71,73	47,00	50,72
	700	77,54	83,68	54,83	59,17
	800	88,62	95,64	62,66	67,63
	900	99,69	107,59	70,49	76,08
	1000	110,77	119,55	78,33	84,53
	1100	121,85	123,08	86,16	87,03
	1200	123,08		87,03	

Allgemeine Bemerkungen siehe Seite 37

Verstärkung von Trägerdurchbrüchen

Allgemeine Bemerkungen

- Die Nachweise am Netto-Querschnitt sind zusätzlich zu führen. Dabei sind bei rechteckigen Durchbrüchen das zusätzliche Biegemoment aus Querkraft und die erhöhten Schubspannungen im Bereich der Durchbruchecken zu berücksichtigen
- Die Bemessung der Verstärkung ist für beide Seiten des Durchbruches durchzuführen
- Werte gelten für entsprechende Verankerungslängen lef des Gewindes
- Wenn die WB-Befestiger mit der Eindrehhülse versenkt werden, ist zu berücksichtigen, dass die Schrauben im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widerstand aufweisen

- Anschlussgeometrien gemäss Zeichnungen sind einzuhalten
- Tabellenwerte für $k_{mod} = 0.8$ und $\gamma_{M} = 1.3$ gemäß EN1995-1-1:2004+AC:2006+A1:2008

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben

Rand- und Zwischenabstände

WB-Befestiger siehe Unterkapitel "Allgemeine Informationen WB" → ab Seite 15 siehe auch ETA-19/0129 Seite 12

Beispiel

Brettschichtholz GL24h; Nutzungsklasse 1

Schnitt 1

Schnittgrössen

 $V_d = 45.0 \text{ kN}$

 $M_d = 67.5 \text{ kNm}$

Querzugskraft

$$F_{t,90,Ed} = \frac{h_a}{4 \cdot h} \cdot \left[3 - \left(\frac{h_a}{h} \right)^2 \right] \cdot V_{Ed} + \frac{1}{125 \cdot h_r} \cdot M_{Ed} = \left[\frac{100}{4 \cdot 400} \cdot \left[3 - \left(\frac{100}{400} \right)^2 \right] \cdot 45.0 \cdot 10^3 + \frac{1}{125 \cdot 150} \cdot 67.5 \cdot 10^6 \right] \cdot 10^{-3} = 11.86 \ kN_{Ed} + \frac{1}{125 \cdot 150} \cdot 10^{-3} + \frac{1}{125 \cdot 150} \cdot 10^{-3}$$

Wahl Befestiger

gewählt: 1 WB-16 ; L = 300 mm ; I_{ef} = 150 mm \rightarrow R_{d} = (19,13 + 9,56) / 2 = 14,35 kN

Nachweis

$$\frac{F_{t,90,d}}{n^{0.9} \cdot R_d} = \frac{11.86}{1^{0.9} \cdot 14.35} = 0.83 < 1.0 \to i.0.$$

Verstärkung von Trägerdurchbrüchen

Schnitt 2

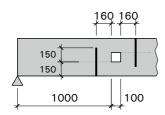
Schnittgrössen

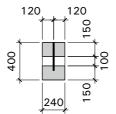
 $V_{d} = 45.5 \text{ kN}$

 $M_{d} = 71.8 \text{ kNm}$

Querzugskraft

$$F_{t,90,Ed} = \frac{h_a}{4 \cdot h} \cdot \left[3 - \left(\frac{h_a}{h} \right)^2 \right] \cdot V_{Ed} + \frac{1}{125 \cdot h_r} \cdot M_{Ed} = \left[\frac{100}{4 \cdot 400} \cdot \left[3 - \left(\frac{100}{400} \right)^2 \right] \cdot 40.5 \cdot 10^3 + \frac{1}{125 \cdot 150} \cdot 71.8 \cdot 10^6 \right] \cdot 10^{-3} = 11.26 \; kN_{Ed} + \frac{1}{125 \cdot 150} \cdot 10^{-3} + \frac{1}{125 \cdot 150} \cdot 10^{-3}$$


Wahl Befestiger


gewählt: 1 WB-16 ; L = 300 mm ; I_{ef} = 150 mm \rightarrow R_{d} = (17.86 + 8.93) / 2 = 14.35 kN

Nachweis

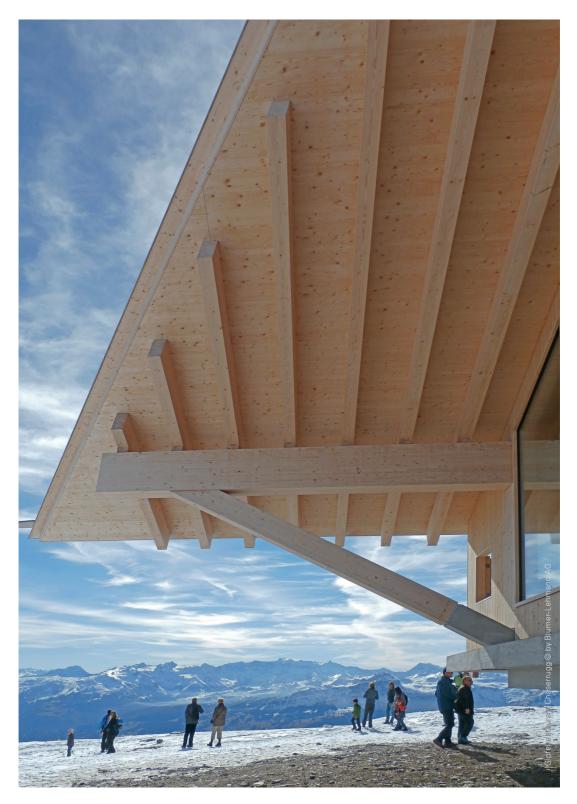
$$\frac{F_{t,90,d}}{n^{0.9} \cdot R_d} = \frac{11.26}{1^{0.9} \cdot 14.35} = 0.78 < 1.0 \rightarrow i.0.$$

Anordnung

Allgemeine Bemerkungen

• Die Nachweise am Netto-Querschnitt sind zusätzlich zu führen. Dabei sind bei rechteckigen Durchbrüchen das zusätzliche Biegemoment aus Querkraft und die erhöhten Schubspannungen im Bereich der Durchbruchecken zu berücksichtigen

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben.


Verstärkung von Trägerdurchbrüchen

Befestigungssystem WB

Ausführung		HECO-WB Gewindestange
Werkstoff		Kohlenstoffstahl
Oberfläche	verzinkt blau A3K	Für Nutzungsklassen: 1 und 2 (nicht direkt bewittert)

Тур		Nenn Ø		Länge	Antrieb
		d		L	
		[mm]		[mm]	
WB	-	16	Х	3000	Eindrehhülse
WB	-	20	Х	3000	Eindrehhülse

Befestigungssystem **HECO-WB**

Technisches Datenblatt

Vorteile, die überzeugen

- Keine Abminderung der Tragfähigkeit des Hauptträgers
- Materialeinsparung, da Hauptträgerabmessungen kleiner gewählt werden können
- Einfache Verarbeitung
- Hoher Brandwiderstand der Verbindung
- Befestiger nicht sichtbar
- ETA-19/0129 (WB)

Bemessungsvorschlag nach DIN EN 1995-1-1/NA:2013-08, 6.8.2

Anschlussgeometrie

Bauteile, die druch eine Krafteinleitung rechtwinklig zur Holzfaserrichtung unterhalb der 0,7-fachen Trägerhöhe beansprucht werden, können mit CC-, WR- oder WB-Befestiger verstärkt werden, damit die Tragfähigkeit der Verbindung nicht abgemindert werden muss.

Querzugkraft

Die Versträkung eines Queranschlusses mit dem Verhältnis a / h < 0.7 ist für folgenden Bemessungswert der Zugkraft Ft,90,Ed zu bemessen:

$$F_{t,90,Ed} = \left[1 - 3 \cdot \left(\frac{a}{h}\right)^2 + 2 \cdot \left(\frac{a}{h}\right)^3\right] \cdot F_{90,Ed}$$

F_{t,90,Ed} Bemessungswert der auf die Verstärkung wirkenden Zugkraft. Die Zugkraft F_{t,90,Ed} ist in der Höhe des Abstands a vom beanspruchten Rand wirkend anzunehmen und über die Gewindelängen unterhalb (lad,u) und oberhalb (lad,o) der Linie auf der Höhe a einzuleiten.

a grösster Abstand der Verbindungsmittel des Queranschlusses vom beanspruchten Trägerrand F_{90,Ed} Bemessungswert der einzuleitenden Anschlusskraft rechtwinlig zur Faserrichtung des Holzes

 ${\rm I}_{\rm ad,u}$ effektive Gewindelänge unterhalb der Linie auf der Höhe a ${\rm I}_{\rm ad,o}$ effektive Gewindelänge oberhalb der Linie auf der Höhe a

h Höhe des Hauptträgers

a₁ Siehe Rand- und Zwischenabstände
 a₂ Siehe Rand- und Zwischenabstände
 a_{2,CG} Siehe Rand- und Zwischenabstände

Nachweis

$$\frac{F_{t,90,d}}{n^{0.9}\cdot R_d} \leq 1$$

R_d Bemessungswert des Ausziehwiderstands eines Befestigers (für l_{ef} die nicht in der Tabelle ausgewiesen sind darf der Widerstand linear interpoliert werden)

n Anzahl der Befestiger

F_{t 90 Fd} Bemessungswert der auf die Verstärkung wirkenden Zugkraft

Die kürzere Einbindetiefe lef des Gewindes ober- oder unterhalb der Linie auf der Höhe a ist für die Bemessung massgebened.

		C24	GL24h
		$\rho_{k} = 350 [kg/m^{3}]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef} [mm]	R _{ax,d} [kN]	R _{ax,d} [kN]
WB-16	100	8,86	9,56
	200	17,72	19,13
	300	26,58	28,69
	400	35,45	38,25
	500	44,31	47,82
	600	53,17	57,38
	700	62,03	66,95
	800	70,89	76,51
	900	76,92	76,92
	1000		
WB-20	100	11,08	11,95
	200	22,15	23,91
	300	33,23	35,86
	400	44,31	47,82
	500	55,38	59,77
	600	66,46	71,73
	700	77,54	83,68
	800	88,62	95,64
	900	99,69	107,59
	1000	110,77	119,55
	1100	121,85	123,08
	1200	123,08	

Allgemeine Bemerkungen siehe Seite 24

= Stahlversagen

Allgemeine Bemerkungen

- Wenn die WB-Befestiger mit der Eindrehhülse versenkt werden, ist zu berücksichtigen, dass die Befestiger, im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widerstand aufweisen
- Werte gelten für entsprechende Verankerungslängen s bzw. I_{ef} des Gewindes.
- Werte für andere l_{ef} dürfen durch lineare Interpolation ermittelt werden
- Die Befestiger sind unter 90° zur Faserrichtung gleichmässig verteilt, symmetrisch beim bzw. direkt neben dem Queranschluss anzuordnen
- Ausserhalb des Queranschlusses in Trägerlängsrichtung darf pro Seite nur ein Befestiger als tragend in Rechnung gestellt werden
- Die Befestiger müssen mindestens über die 0,7-fache Trägerhöhe geführt werden
- Tabellenwerte für $k_{mod} = 0.8$ und $\gamma_M = 1,3$ gemäß EN1995-1-1:2004+AC:2006+A1:2008

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben

Rand- und Zwischenabstände

WB-Befestiger siehe Unterkapitel "Allgemeine Informationen WB" \rightarrow ab Seite 15 siehe auch ETA-19/0129 Seite 12

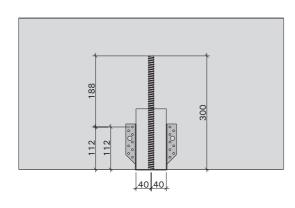
Beispiel

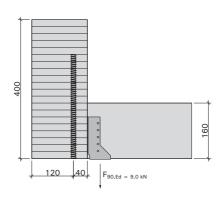
 $\begin{array}{lll} \mbox{Hauptträger} & \mbox{GL24h} & \mbox{b/h} = 160/400 \ [mm] \\ \mbox{Nebenträger} & \mbox{C24} & \mbox{b/h} = 80/160 \ [mm] \\ \mbox{Verbindungsmittel} & \mbox{Balkenschuh} \ 80/120 \ [mm] \end{array}$

Bemessungswert der Querlast $F_{90,Ed} = 9.0 \text{ kN}$

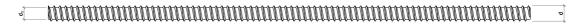
Querzugkraft

$$F_{t,90,Ed} = \left[1 - 3 \cdot \left(\frac{112}{400}\right)^2 + 2 \cdot \left(\frac{112}{400}\right)^3\right] \cdot 9.0 = 7.28 \ kN$$

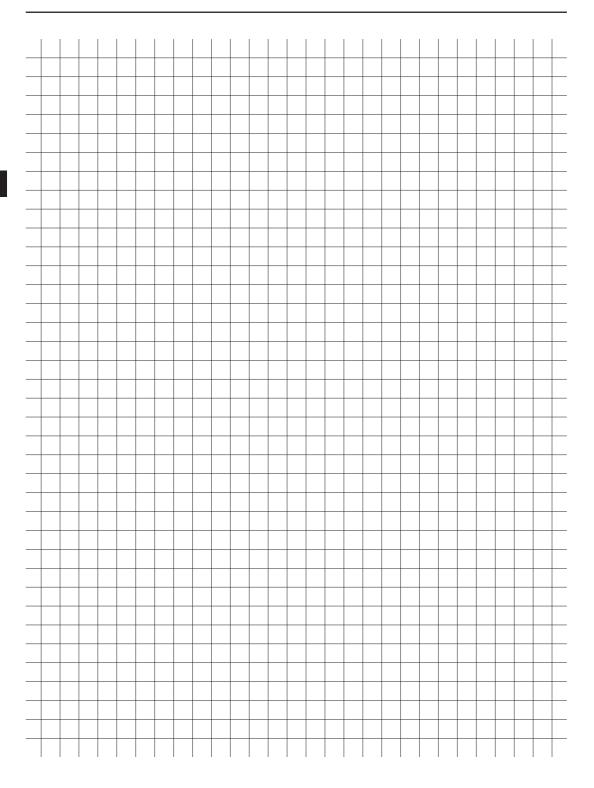

Schraube


1 Stück WB-16 $I_{ef} = 112 \text{ mm}$ $R_{d} = 112 / 200 \cdot 19.13 = 10.71 \text{ kN}$

Nachweis

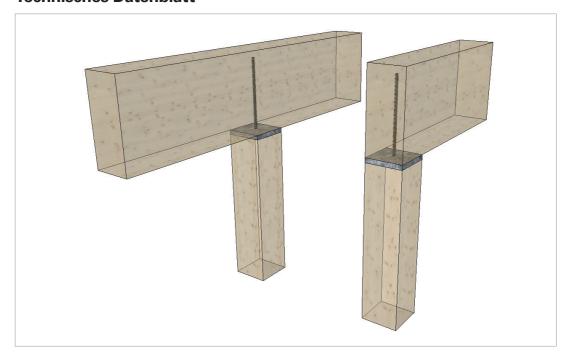

$$\frac{7.28}{1^{0.9} \cdot 10.71} = 0.68 \le 1 \rightarrow i.0.$$

 $L_{WB} = 300 \text{ mm} > 0.7 \cdot 400 = 280 \text{ mm} \rightarrow i.0.$



Befestigungssystem WB

Ausführung		HECO-WB Gewindestange
Werkstoff		Kohlenstoffstahl
Oberfläche	verzinkt blau A3K	Für Nutzungsklassen: 1 und 2 (nicht direkt bewittert)


Тур		Nenn Ø		Länge	Antrieb
		d		L	
		[mm]		[mm]	
WB	-	16	X	3000	Eindrehhülse
WB	-	20	Х	3000	Eindrehhülse

Befestigungssystem **HECO-WB**

Technisches Datenblatt

Vorteile, die überzeugen

- Wesentliche Erhöhung des aufnehmbaren Querdrucks
- Materialeinsparung, da Trägerabmessungen nicht erhöht werden müssen
- Befestiger ist von oben und unten einsetzbar
- Einfache Verarbeitung
- Hoher Brandwiderstand der Verbindung
- Befestiger nicht sichtbar
- ETA-19/0129 (WB)

Bemessungsvorschlag nach ETA-19/0129 Anhang B

		Befestiger 45° zur Faser		Befestiger 70° zur Faser		Befestig	jer 90° zur Faser
		C24	GL24h	C24	GL24h	C24	GL24h
		$\rho_{\rm k} = 350 [{\rm kg/m^3}]$	$\rho_{\rm k} = 385 [{\rm kg/m^3}]$	$\rho_{\rm k} = 350 [{\rm kg/m^3}]$	$\rho_{\rm k} = 385 [{\rm kg/m^3}]$	$\rho_{k} = 350 [kg/m^{3}]$	$\rho_{k} = 385 [kg/m^{3}]$
Befestiger	l _{ef}	R _d [kN]	R _d [kN]	R _d [kN]	R _d [kN]	R _d [kN]	R _d [kN]
WB-16	200	17,72	19,13	17,72	19,13	17,72	19,13
	400	35,45	38,25	35,45	38,25	35,45	38,25
	600	46,69	47,50	48,12	48,89	49,07	49,82
WB-20	200	22,15	23,91	22,15	23,91	22,15	23,91
	400	44,31	47,82	44,31	47,82	44,31	47,82
	600	66,46	69,13	66,46	70,83	66,46	71,73
	800	68,14		69,88		69,88	

Allgemeine Bemerkungen siehe unten

= Stahlversagen

Allgemeine Bemerkungen

- Wenn die WB-Befestiger mit der Eindrehhülse versenkt werden, ist zu berücksichtigen, dass die Befestiger, im Bereich wo die Hülse in das Holz eingedrungen ist, keinen Widerstand aufweisen
- Werte gelten für entsprechende Verankerungslängen lef des Gewindes
- Anschlussgeometrien gemäss Zeichnungen sind einzuhalten
- Die Befestigerenden müssen alle exakt bündig mit der Holzoberfläche liegen
- Zwischen Befestiger und Stahlplatte ist eine Zwischenschicht nicht zulässig

- Die Tragfähigkeit des Anschlusses ergibt sich aus der Summe der Befestigertragfähigkeiten und der aufnehmbaren Druckkraft der Auflagerfläche
- Der Nachweis der Querdruckspannung in der Ebene der Befestigerspitze muss in jedem Fall mit I_{ef 2} gemäss Zeichnung geführt werden
- Tabellenwerte für $k_{mod} = 0.8$ und $\gamma_{M} = 1,3$ gemäß EN1995-1-1:2004+AC:2006+A1:2008

Vor der Ausführung sind sämtliche Berechnungen vom verantwortlichen Planer zu überprüfen und freizugeben

Bemessungsvorschlag nach ETA-19/0129 Anhang B

Erforderliche Befestigeranzahl:

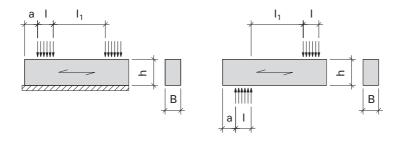
$$n = \frac{V_d - R_{c,90,d}}{R_d}$$

erforderliche Anzahl Befestiger Bemessungswert der Druckkraft Widerstand Befestiger gemäss Tabelle

$$R_{c,90,d} = k_{c,90} \cdot B \cdot I \cdot f_{c,90,d}$$

 $k_{c,90}$ Beiwert

In der Regel	$k_{c,90} = 1.00$		
Kontinuierliche Unterstützung und $I_1 \ge 2 \cdot h$	$k_{c,90} = 1.25$	C24	
	$k_{c,90} = 1.50$	GL24h	
Einzelabstützungen und $I_1 \ge 2 \cdot h$	$k_{c,90} = 1.50$	C24	
	$k_{c.90} = 1.75$	GL24h	vorausgesetzt l ≤ 400mm


B Auflagerbreite

I tatsächliche Kontaktlänge

(I darf auf jeder Seite um 30 mm erhöht werden, jedoch nicht mehr als a, I oder I_1 / 2)

f_{c.90.d} Bemessungswert der Druckfestigkeit rechtwinklig zur Faserrichtung

fo and	1.5 N/mm ² C24	1.7 N/mm ² GL24h

Nachweis in Ebene der Befestigerspitze:

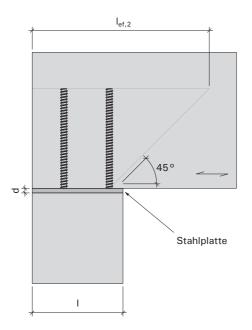
$$\frac{V_d}{B \cdot l_{ef,2} \cdot f_{c,90,d}} \le 1$$

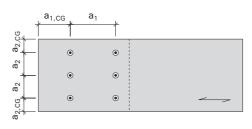
V_d Bemessungswert der Druckkraft

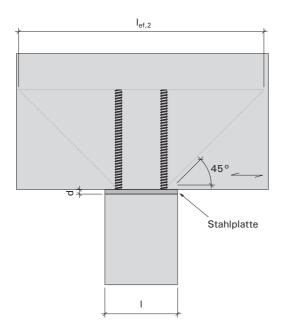
B Auflagerbreite

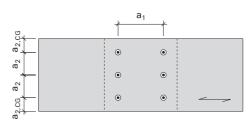
l_{ef,2} Tatsächliche Kontaktlänge in Ebene der Befestigerspitze (siehe Zeichnung)

Bemessungswert der Druckfestigkeit rechtwinklig zur Faserrichtung


Generell	1.8 N/mm ²	C24	1.9 N/mm ²	GL24h
Mit Vorholz	2.3 N/mm ²	C24	2.5 N/mm ²	GL24h
Endauflagerung	1.8 N/mm²	C24	2.5 N/mm ²	GL24h


Vorschlag für die Dimensionierung der Stahlplatte (S235 oder besser):


 $d[mm] \ge 2.7 \cdot \sqrt{R_d[kN]}$


d Plattendicke

R_d Widerstand Befestiger gemäss Tabelle

Rand- und Zwischenabstände

WB-Befestiger siehe Unterkapitel "Allgemeine Informationen WB" \rightarrow ab Seite 15 siehe auch ETA-19/0129 Seite 12

Beispiel

Träger GL24h; b/h = 160/400 [mm] Stütze b/h = 160/160 [mm] Stahlplatte über volle Querschnittsfläche der Stütze Feuchteklasse 1

Auflagerkraft $V_d = 130 \text{ kN}$

 $k_{\rm c,90}$ = 1.5 (infolge Linienlast auf Trägeroberseite und Punktlast auf Unterseite infolge Auflager) B = 160 mm I = 160 + 1 \cdot 30 = 190 mm $f_{\rm c,90,d}$ = 1.7 N/mm²

 $R_{c.90.d} = 1.5 \cdot 160 \cdot 190 \cdot 1.7 \cdot 10^{-3} = 77.52 \text{ kN}$

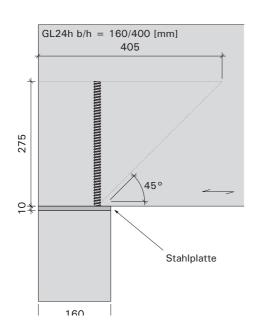
Befestiger: WB-16; L = 275 mm

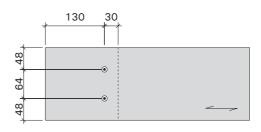
 $R_d = 275 / 400 \cdot 38.25 = 26.30 \text{ kN}$

Erforderliche Befestigeranzahl

$$n = \frac{130 - 77.52}{26.30} = 1.99$$

gewählt: 2 Stück WB-16; L = 275 mm

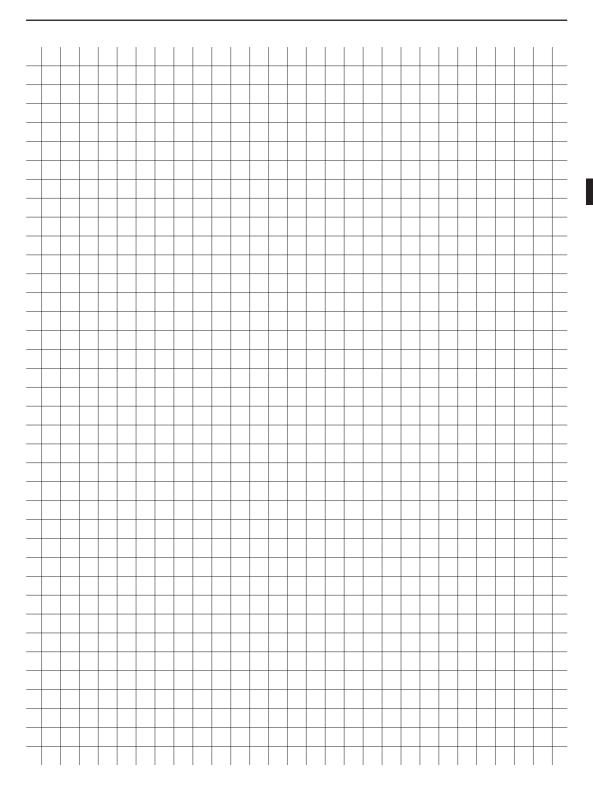

Nachweis in Ebene der Schraubenspitze


$$\frac{130 \cdot 10^3}{160 \cdot 405 \cdot 2.5} = 0.80 < 1 \rightarrow i.0.$$

Vorschlag für die Dimensionierung der Stahlplatte (S235 oder besser)

 $d = 2.7 \cdot \sqrt{12.00} = 9.4 \, mm$

gewählt: d = 10 mm



Befestigungssystem WB

Ausführung		HECO-WB Gewindestange
Werkstoff		Kohlenstoffstahl
Oberfläche	verzinkt blau A3K	Für Nutzungsklassen: 1 und 2 (nicht direkt bewittert)

Тур		Nenn Ø		Länge	Antrieb
		d		L	
		[mm]		[mm]	
WB	-	16	Х	3000	Eindrehhülse
WB	-	20	Х	3000	Eindrehhülse

www.heco-schrauben.com

HECO-Schrauben GmbH & Co. KG

Dr.-Kurt-Steim-Straße 28, 78713 Schramberg Telefon +49 (0)7422/989-0, Fax +49 (0)7422/989-200